92,285 research outputs found

    Boundary Layer Stability and Laminar-Turbulent Transition Analysis with Thermochemical Nonequilibrium Applied to Martian Atmospheric Entry

    Get PDF
    As Martian atmospheric entry vehicles increase in size to accommodate larger payloads, transitional ow may need to be taken into account in the design of the heat shield in order to reduce heat shield mass. The mass of the Thermal Protection System (TPS) comprises a significant portion of the vehicle mass, and a reduction of this mass would result in fuel savings. The current techniques used to design entry shields generally assume fully turbulent flow when the vehicle is large enough to expect transitional flow, and while this worst-case scenario provides a greater factor of safety it may also result in overdesigned TPS and unnecessarily high vehicle mass. Greater accuracy in the prediction of transition would also reduce uncertainty in the thermal and aerodynamic loads. Stability analysis, using e(sup N) -based methods including Linear Stability Theory (LST) and the Parabolized Stability Equations (PSE), offers a physics-based method of transition prediction that has been thoroughly studied and applied in perfect gas flows, and to a more limited extent in reacting and nonequilibrium flows. These methods predict the amplification of a known disturbance frequency and allow identification of the most unstable frequency. Transition is predicted to occur at a critical amplification or N Factor, frequently determined through experiment and empirical correlations. The LAngley Stability and TRansition Analysis Code (LASTRAC), with modifications for thermochemically reacting flows and arbitrary gas mixtures, will be presented with LST results on a simulation of a high enthalpy CO2 gas wind tunnel test relevant to Martian atmospheric entry. The results indicate transition caused by modified Tollmien-Schlichting waves on the leeward side, which are predicted to be more stable and cause transition slightly downstream when thermochemical nonequilibrium is included in the stability analysis for the same mean flow solution

    Computer aided design and analysis of gear tooth geometry

    Get PDF
    A simulation method for gear hobbing and shaping of straight and spiral bevel gears is presented. The method is based upon an enveloping theory for gear tooth profile generation. The procedure is applicable in the computer aided design of standard and nonstandard tooth forms. An inverse procedure for finding a conjugate gear tooth profile is presented for arbitrary cutter geometry. The kinematic relations for the tooth surfaces of straight and spiral bevel gears are proposed. The tooth surface equations for these gears are formulated in a manner suitable for their automated numerical development and solution

    Multiple Boundary Layer Instability Modes with Nonequilibrium and Wall Temperature Effects Using LASTRAC

    Get PDF
    Prediction and control of boundary layer transition from laminar to turbulent is important to many flow regimes and vehicle designs, including vehicles operating at hypersonic conditions where nonequilibrium effects may be encountered. Wall cooling is known to affect the instability characteristics of the boundary layer and subsequently the transition location. Design considerations, including material failure and fuel chemistry, require the use of actively cooled walls in hypersonic vehicles, further motivating the study of wall temperature effects on top of the considerations of reducing heat flux, drag, and uncertainty. In this work, we analyze the stability of a boundary layer with chemical and thermal nonequilibrium on a Mach 20, 6 wedge. We investigate the effects of wall temperature on multiple unstable modes individually and on the integrated growth of disturbances along the surface. We use the LAngley Stability and TRansition Analysis Code (LASTRAC) to evaluate boundary layer stability, using capabilities implemented by the authors. Included are results that address chemical nonequilibrium with both thermal equilibrium and nonequilibrium

    Exposing the dressed quark's mass

    Full text link
    This snapshot of recent progress in hadron physics made in connection with QCD's Dyson-Schwinger equations includes: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of in-hadron condensates; results on the hadron spectrum, including dressed-quark-core masses for the nucleon and Delta, their first radial excitations, and the parity-partners of these states; an illustration of the impact of DCSB on the electromagnetic pion form factor, thereby exemplifying how data can be used to chart the momentum-dependence of the dressed-quark mass function; and a prediction that F_1^{p,d}/F_1^{p,u} passes through zero at Q^2\approx 5m_N^2 owing to the presence of nonpointlike scalar and axial-vector diquark correlations in the nucleon.Comment: 10 pages, 4 figures, 2 tables. Contribution to the Proceedings of the 4th Workshop on Exclusive Reactions at High Momentum Transfer, Thomas Jefferson National Accelerator Facility Newport News, Virginia, 18-21 May 201

    Implementation on a nonlinear concrete cracking algorithm in NASTRAN

    Get PDF
    A computer code for the analysis of reinforced concrete structures was developed using NASTRAN as a basis. Nonlinear iteration procedures were developed for obtaining solutions with a wide variety of loading sequences. A direct access file system was used to save results at each load step to restart within the solution module for further analysis. A multi-nested looping capability was implemented to control the iterations and change the loads. The basis for the analysis is a set of mutli-layer plate elements which allow local definition of materials and cracking properties

    Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Get PDF
    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures

    Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Get PDF
    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered

    Impact of dynamical chiral symmetry breaking on meson structure and interactions

    Get PDF
    We provide a glimpse of recent progress in meson physics made via QCD's Dyson-Schwinger equations with: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of in-hadron condensates; results for the masses of the \pi, \sigma, \rho, a_1 mesons and their first-radial excitations; and an illustration of the impact of DCSB on the pion form factor.Comment: 6 pages, 3 figures, 1 table. Contribution to Proceedings of the 11th International Workshop on Meson Production, Properties and Interaction, Uniwersytet Jagiellonski, Instytut Fizyki, Krakow, Poland, 10-15 June 201

    The BcB_c Decays to PP-wave Charmonium by Improved Bethe-Salpeter Approach

    Full text link
    We re-calculate the exclusive semileptonic and nonleptonic decays of BcB_c meson to a PP-wave charmonium in terms of the improved Bethe-Salpeter (B-S) approach, which is developed recently. Here the widths for the exclusive semileptonic and nonleptonic decays, the form factors, and the charged lepton spectrums for the semileptonic decays are precisely calculated. To test the concerned approach by comparing with experimental measurements when the experimental data are available, and to have comparisons with the other approaches the results obtained by the approach and those by some approaches else as well as the original B-S approach, which appeared in literature, are comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table
    • …
    corecore